Обучение с малым количеством данных
        Вас ждет увлекательное и глубокое исследование одного из самых инновационных направлений в искусственном интеллекте, способного революционизировать технологии. Когда традиционные модели требуют огромных объемов данных для обучения, Few-shot и Zero-shot подходы позволяют алгоритмам обучаться и принимать решения на минимальном количестве примеров – или вовсе без них.   В этой книге раскрываются секреты создания моделей, которые не только учатся на лету, но и могут адаптироваться к новым условиям, сталкиваясь с неизвестными категориями. Читатель узнает, как эти прорывные методы трансформируют такие критические области, как медицина, робототехника, обработка изображений и текста.   Эта книга станет путеводителем для тех, кто хочет освоить будущее ИИ, исследуя тонкости работы алгоритмов, способных справляться с нехваткой данных, и предсказывая их влияние на ближайшие технологические горизонты.
        
    
    Серия книг: Создание нейросетей 3
Где можно прочитать
                                    Litres.ru
                                    
                            
                                            Обучение с малым количеством данных
 
            
        
     
        
    